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Abstract

A new formulation of a semi-implicit, semi-Lagrangian spectral method is given together with a conformal mapping

of the underlying Gaussian grid. The mapping based on the Schmidt transformation focuses grid resolution on a par-

ticular region. The advective form of the vorticity–divergence equations allows the conformal map to be incorporated in

a semi-Lagrangian transport step while maintaining an efficient spectral transform algorithm. The shallow water equa-

tions on the sphere are solved to test the variable resolution spectral model. By focusing on a specified location, local

details of the flow are more accurately resolved. Accuracy and stability of the method are compared with uniform

spectral solutions.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Smooth grid transformations in spectral atmospheric models were introduced in Schmidt�s pioneering
paper [13]. He defined a conformal mapping of the sphere onto itself with the property that the spherical

Laplacian and Jacobian in the mapped coordinate system are simply modified by a mapping factor. This

leads to an elegant Eulerian formulation of the shallow water equations and can be used as a basis for

numerical approximations and numerical solutions with high resolution in a particular focused area. A
number of authors have used the Schmidt transformation with Eulerian numerical schemes in the shallow

water equation context [2,8,14]. Coutier and Geleyn [2] did not extend the mapping to the solution of the
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semi-implicit equations in spectral space and introduced an approximate solution only valid for Eulerian

models. This was extended in the multi-level operational weather forecasting system ARPEGE/IFS [21]

to integrate the mapping factor in the spectral part of the calculation and, in particular, appears in the solu-

tion of the semi-implicit Helmholtz equation by a penta-diagonal matrix solve in spectral space. This system

has been used to provide local area forecasts operationally. It is reported in [4] that a T63 model with
stretching (c = 3.5) produces better accuracy in a 10-year European climate simulation than the uniform

T106 spectral model.

The advection term can be treated in grid point space independently of the spectral space approxima-

tions. The semi-Lagrangian transport (SLT) method is used in atmospheric general circulation models to

advect mass, momentum, energy and chemical species [10,11,15,20,21]. The method updates the value of

a field at a grid point by first establishing a trajectory through which the particle has moved during the

current timestep. This trajectory is found iteratively using the interpolated velocity field at the midpoint

of the trajectory. The field value is interpolated at the departure point using shape preserving interpolation.
Williamson�s SLT formulation in [20] used vorticity–divergence variables derived by taking the curl and

divergence of the discrete semi-Lagrangian momentum equation. In this formulation, the non-advective

terms are discretized using a spherical harmonic transform to approximate the spatial derivatives and solve

a Helmholtz equation arising from the semi-implicit time stepping. First and second order spatial derivative

terms are lumped together making it difficult to incorporate the Schmidt transformation in the spectral

transform. The improvement offered in [5,6] is that only the Laplacian operator appears in the mapped

equations and the SLT discretization is applied directly to the scalar advective form of the vorticity/diver-

gence equations. The present paper extends the formulation to incorporate the Schmidt transformation in
the advective formulation of the shallow water equations in spherical geometry. Extension to multi-level

baroclinic models should be straightforward.

The semi-Lagrangian method combined with spectral approximation is a powerful algorithm. The high

accuracy obtained for the approximation of spatial derivatives and the ease of solution for a semi-implicit

system that filters the fast gravity wave terms make this algorithm competitive in accuracy and computa-

tional efficiency. Treating the non-linear advective terms with the semi-Lagrangian transport removes the

Courant limits, allowing long time steps while maintaining stability and shape [18]. It is found that local accu-

racy can be enhanced while maintaining stability in the context of long time steps. No horizontal diffusion
operators were needed to damp high frequency waves since there is inherent smoothing in the semi-Lagrang-

ian interpolation. An Asselin time filter was necessary, however, to suppress the spurious computational

mode of the three time level centered differences. The accuracy and stability properties of the variable reso-

lution spectral approximations are tested using some of the standard shallow water test cases given in [19].
2. Shallow water equations and model equations on the sphere

The shallow water equations in advective form [19] in spherical geometry are
dv

dt
¼ �f~k � v�r/; ð1Þ

d/�

dt
¼ �/�r � v; ð2Þ
where v ¼ u~iþ v~j, the horizontal velocity, is orthogonal to the unit vector~k in the radial direction. The free

surface geopotential is denoted by / = /* + /s = g(h* + hs) and /� ¼ /0 þ �/, where g is the gravitational

acceleration and h* is the height of the free surface above the bottom height, hs. The bottom surface height

specifies orography as a time invariant function and �/ is the time invariant spatial mean. The Coriolis term,
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f = 2X sinh, incorporates the rotation effects at latitude h of the sphere with angular velocity X. The nor-

malized substantial derivative is given by
d

dt
¼ o

ot
þ v � r:
Eqs. (1) and (2) require no boundary conditions but are posed with initial conditions on v and /.
To avoid problems with the vector representation of the velocity at the poles and to maintain compat-

ibility with the scalar spectral transform method, the equations can be written in terms of the vorticity

f �~k � r � v and divergence d ” $ Æ v.
Two identities for spherical geometry are needed to derive the vorticity and divergence form,
ðv � rÞv � r v � v
2

� �
þ f~k � v
and
r� ðr � vÞ ¼ rðr � vÞ � 1

cos h
r2ðv cos hÞ � 2 sin h

a cos h
F ;
where
F ¼
�f

d

� �
:

By applying~k � r� and divergence operator $Æ to (1) we obtain the advective form of the vorticity and

divergence equations
dg
dt

¼ �gd; ð3Þ

dd
dt

þr2/� ¼ W; ð4Þ
where
W ¼ gðg� f Þ �~k � v�rf þ v � ~F �r2 /s þ
v � v
2

� �
; ð5Þ

~F ¼ 1

cos h
r2ðv cos hÞ þ 2 sin h

a cos h
F ; ð6Þ
and
g ¼ fþ f :
To obtain v from f and d, the Helmholtz theorem separates the horizontal velocity vector v into a scalar
stream function w and a scalar velocity potential v, as
v ¼~k �rwþrv: ð7Þ
Application of the curl and divergence operators to (7) gives the relationships for the prognostic variables f
and d in terms of the stream function and the velocity potential
r2w ¼ f;
and
r2v ¼ d:
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The prognostic equations for vorticity (3) and divergence (4) involve only the Laplacian operator and the

advective operator in the left-hand sides. This form is useful because of its simple differential structure.

Avoiding the first derivative has distinct advantages for the smooth grid mappings to be investigated.

The details of the derivation are given in [5].
3. Schmidt�s conformal transformation

The results in this section follow [2,13]. Consider a mapping L of the sphere to itself defined by
ðk0; l0Þ ¼ Lðk; lÞ;
where l = sinh and k and h are the spherical coordinates, longitude and latitude, respectively; (k 0,l 0) are the

transformed coordinates. For functions g, g 0 with spherical domain a prime indicates the dependence on the

new coordinates k 0 and l 0. The new coordinates define the sphere in what we will call ‘‘physical space’’ and

will be the site of a mapped, variable resolution grid.

Let F 0(k 0,l 0), the so-called mapping factor, be the determinant of the Jacobian matrix of the mapping

L,
F 0ðk0; l0Þ ¼
ok0

ok
ol0

ok

ok0

ol
ol0

ol

�����
����� ¼

ok
ok0

ol
ok0

ok
ol0

ol
ol0

�����
�����
�1

:

For the shallow water equations, the spectral method using a collocation grid and truncation without

aliasing errors has the spectral closure property. The closure property is that if the vorticity, divergence
and geopotential are expressed in a finite series of spherical harmonics, then the tendencies of those fields

produced by the discrete equations are a finite series of spherical harmonics. This property is conserved in

the shallow water equations transformed by a conformal mapping (the fields and the Coriolis parameter

being expressed in a finite series of spherical harmonics defined over the mapped sphere) if and only if

the function F 0(k 0,l 0) has a decomposition in a finite set of spherical harmonics of the mapped sphere.

The mapping L is then said to be spectral.

If L is a conformal mapping, then we have a property as expressed by Schmidt [13],
r2A ¼ F 0ðk0; l0Þr02A0; ð8Þ

where $ 02 is the standard Laplacian operator with respect to the transformed coordinates (k 0,l 0) and A is a

scalar function.

We introduce two transformations, rotation and stretching, that after transformation, locate the finest

resolution grid at some specified location.

3.1. Rotation

Let R be a rotation transformation. P(k0,h0) is a given point on the unit sphere as illustrated in Fig. 1.

After applying the rotation R, one of the new coordinate axes will go thorough this point. The equations of

the rotation that relate the two coordinate systems are
cos h0 sinðk0 � k0Þ ¼ cos h sinðk� k0Þ;
cos h0 cosðk0 � k0Þ ¼ cos h cosðk� k0Þ sin h0 þ sin h cos h0;

sin h0 ¼ � cos h cosðk� k0Þ cos h0 þ sin h sin h0:

ð9Þ
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Fig. 1. A point P(k0,h0) on the unit sphere in lat–lon coordinates.
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The inverse transformation, obtained by direct computation, is
cos h sinðk� k0Þ ¼ cos h0 sinðk0 � k0Þ;
cos h cosðk� k0Þ ¼ cos h0 cosðk0 � k0Þ sin h0 � sin h0 cos h0;

sin h ¼ cos h0 cosðk0 � k0Þ cos h0 þ sin h0 sin h0:

ð10Þ
Again by direct computation, the Jacobian of the transformation involves the partial derivatives
ok

ok0
¼ cos2h0 sin h0 � cos h0 sin h0 cosðk0 � k0Þ cos h0

cos2h
;

ok
ol0 ¼

sinðk0 � k0Þ cos h0
cos h0cos2h

;

ol

ok0
¼ � cos h0 sinðk0 � k0Þ cos h0;

ol
ol0 ¼

� sin h0 cosðk0 � k0Þ cos h0 þ cos h0 sin h0
cos h0

:

ð11Þ
If h = ±p/2, then ok/ol 0 and ol/ol 0 are undefined. By changing the stretching factor such that there is no

grid point located at the poles, this problem can be avoided without adding any restrictions on the focusing

area and stretching factor.

The mapping factor of the rotation R is
F 0
Rðk

0; l0Þ ¼ 1
and hence the rotation is spectral.

3.2. Stretching

Let S be a stretching transformation given by
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k0 ¼ k;

l0 ¼ ðc2 � 1Þ þ lðc2 þ 1Þ
ðc2 þ 1Þ þ lðc2 � 1Þ ;

ð12Þ
where c is the stretching factor. Depending on the value of c (>1 or <1), we stretch the mesh towards the

north pole or the south pole. The inverse transformation is obtained for c�1, it is,
k ¼ k0;

l ¼ �ðc2 � 1Þ þ l0ðc2 þ 1Þ
ðc2 þ 1Þ � l0ðc2 � 1Þ :

ð13Þ
The partial derivatives in the Jacobian are
ok=ok0 ¼ 1; ok=ol0 ¼ 0; ol=ok0 ¼ 0;

ol=ol0 ¼ 4c2=fc2 þ 1� l0ðc2 � 1Þg2
ð14Þ
and the mapping factor of S is then,
F 0
Sðk

0; l0Þ ¼ fc2 þ 1� l0ðc2 � 1Þg2=4c2: ð15Þ

The stretching transformation S is also spectral.

In order to put the finest grids on a specified region, we need to combine the stretching and the rotation
transformations. So define the mapping L as the product of the mapping R and S. The mapping factor

F 0(k 0,l 0) of L is given by
F 0ðk0; l0Þ ¼ F 0
Rðk

0; l0Þ � F 0
Sðk

0; l0Þ ¼ c2 þ 1

2c
� c2 � 1

2c
l0

� �2

: ð16Þ
The mapping factor F 0(k 0,l 0) of L is a second-order polynomial in l 0 and hence the mapping is spectral.

Once a discrete Gaussian grid is introduced for the spectral transformations, the effect of the map-

ping will be to focus points near the pole and rotate this focused pole to an area of interest and high

resolution.
4. Semi-Lagrangian formulation

A three time level SLT method for the shallow water equations was described in [11]. For meteorological

models, the form of the method is based on a division of terms in the equations between those involved in
the fast moving gravity waves and the slower moving Rossby waves. A trapezoidal rule is used to integrate

the fast terms and a spatially averaged mid-point rule is used for the slow terms. All the calculations for the

SLT are performed in the physical space of the mapped grid with coordinates. The interpolations are

performed on a non-uniform, tensor product grid.

The semi-implicit, semi-Lagrangian scheme for the shallow water model in vorticity–divergence takes the

form
gsþ1
A ¼ N g; ð17Þ

dsþ1
A þ Dt½r2/�sþ1

A ¼ N d; ð18Þ

/sþ1
A þ Dt½�/d�sþ1

A ¼ N/; ð19Þ

where N = (Ng,Nd,N/)

T and N = NA + ND, the arrival and departure components of N, are defined by
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NA ¼
�Dt½gd�sA
Dt½W�sA

�Dt½/d�sA

0
B@

1
CA; ð20Þ
and
ND ¼
gs�1
D � Dt½gd�sD

ds�1
D þ Dt½W�sD � Dt½r2/�s�1

D

/s�1
D � Dt½/d�sD � Dt½�/d�s�1

D

0
B@

1
CA: ð21Þ
For the details of the derivation and variants of this scheme, see [5].

The quantities vs, gs, ds, /s, gs � 1, ds � 1, /s � 1 and $2(v Æ v)s, $2/s � 1 are evaluated at the departure

points in physical space. These quantities are used to form ND. Alternatively, the sums of terms involved

in ND can be formed at the grid points and then interpolated to the departure points. This is computation-
ally less expensive and introduces an error only on the order of the interpolation error. The interpolations

are shape preserving using a tensor product cubic interpolation scheme developed by Williamson and

Rasch [18].

The departure point calculation integrates the equation
dx

dt
¼ v
backwards in time along the trajectory from the arrival point. Previous work [15] indicates that a linear

interpolation in the calculation of the trajectories is adequate for accuracy in the solution of the shallow

water equations. To avoid the singularity at the poles of the velocity field, a three-dimensional technique

is used [1,11]. The two-dimensional vectors on the sphere are lifted to three-dimensional vectors in Carte-

sian coordinates. A Lagrange cubic interpolation is used for velocities.
5. Spectral semi-implicit formulation

The semi-implicit formulation for numerical weather prediction has been standard since its introduction

by Robert et al. [12]. The combination of the semi-Lagrangian method with the spectral transform method

has proven to be a powerful technique, providing easy solution of the Helmholtz equation resulting from

the semi-implicit formulation, high spatial accuracy and long timesteps. In addition, Cote and Staniforth [3]

have observed that the semi-Lagrangian treatment of the advection eliminates the nonlinear aliasing of
terms in the spectral representation allowing use of more terms of the spectral expansion with the same

physical grid and effectively doubling the resolution at little extra cost.

The spectral transform, or more correctly, the spherical harmonic transform, is based on the represen-

tation of scalar fields as a linear combination of spherical harmonics as
nðk; lÞ ¼
XM
m¼�M

XNðmÞ

n¼jmj
nmn P

m
n ðlÞeimk ð22Þ
with
nmn ¼
Z 1

�1

1

2p

Z 2p

0

nðk; lÞe�imk dkPm
n ðlÞ dl; ð23Þ
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where Pm
n are the normalized associated Legendre functions. (For more details of the associated Legendre

functions see [16] or Appendix B in [17].)

All the spectral transforms are computed on a uniform Gaussian grid. This is the grid that is mapped to

the variable resolution, physical space grid. It is necessary to use this Gaussian grid to exactly calculate the

spectral coefficients using a Gaussian quadrature. Once spectral coefficients are known, the transformation
from spectral to the uniform grid space is accomplished using (22) and is referred to as harmonic synthesis.

The transform from physical space to spectral space (harmonic analysis) uses a discrete version of the

continuous transform
nmðlÞ ¼ 1

2p

Z 2p

0

nðk; lÞe�imk dkPm
n ðlÞ dl ¼ 1

I

XI

i¼1

nðki; lÞe�imki ; ð24Þ
and
nmn ¼
Z þ1

�1

nmðlÞPm
n ðlÞ dl ¼

XJ

j¼1

nmðljÞPm
n ðljÞwj; ð25Þ
where
ki ¼
2pi
I

; wj ¼
2ð1� l2

j Þ
½JPJ�1ðljÞ�

2
;

XJ

j¼1

wj ¼ 2;
and lj denote the Gaussian latitudes; I is the number of gridpoints in the east–west direction; J the number

of Gaussian latitudes from pole to pole; wj the Gaussian weight at latitude lj; the Gaussian latitudes lj are
determined from the roots of the Legendre polynomial PJ(l).

By introducing a conformal mapping L and applying the property of conformal mapping given in (8), we

obtain the transformed equations from (17)–(19) as follows:
½g�sþ1

A ¼ N g; ð26Þ

½d�sþ1

A þ Dt½r2/F �sþ1

A ¼ N d; ð27Þ

½/�sþ1

A þ Dt½�/d�sþ1

A ¼ N/; ð28Þ
where
N g � ½g�s�1

D � Dtf½gd�sA þ ½gd�sDg;
N d � ½d�s�1

D þ Dtf½W�sA þ ½W�sD � ½D/�s�1

D g;
N/ � ½/�s�1

D � Dtf½/d�sA þ ½/d�sD þ ½�/d�s�1

D g
ð29Þ
and W is defined in (5). For simplicity all primes have been dropped.

Applying the transformation given in (23) to each term of Eqs. (26)–(28) only three types of terms result:
the terms involving unknowns with constant coefficients, the terms involving unknowns with a Laplacian

operator, and the rest. Transformation of the terms with constant coefficients are obtained by direct appli-

cation of (24) and (25).

For terms ofNg,Nd, andN/, we need gs � 1, ds � 1, /s � 1, gs, ds, /s, vs, and [$2/F]s at the arrival points on
physical space. By using high order interpolation to obtain their values at the departure-point on the same

space, then we are able to use Eqs. (24) and (25) to compute fN ggmn ; fN dgmn ; and fN/gmn on spectral space.

Finally, for the term with a Laplacian operator we will use a property of associated Legendre functions

on spectral space [21]
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lPm
n ¼ emn P

m
n�1 þ emnþ1P

m
nþ1;
where n and m are the total and zonal wave numbers, respectively, and
emn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � m2Þ=ð4n2 � 1Þ

p
for jmj 6 n;

0 for jmj > n:

(

Let
a ¼ c2 þ 1

2c
; b ¼ c2 � 1

2c
;

we then obtain F(k,l) = (a + bl)2 and

FPm

n ¼ cm�2;nP
m
n�2 þ cm�1;nP

m
n�1 þ cm0;nP

m
n þ cm1;nP

m
nþ1 þ cm2;nP

m
nþ2; ð30Þ
where
cm�2;n ¼ b2emn e
m
n�1;

cm�1;n ¼ 2abemn ;

cm0;n ¼ a2 þ b2emn e
m
n þ b2emnþ1e

m
nþ1;

cm1;n ¼ 2abemnþ1;

cm2;n ¼ b2emnþ1e
m
nþ2:

ð31Þ
Applying sequential integration by parts and the relationship
r2Pm
n ðlÞeimk ¼

�nðnþ 1Þ
a2

Pm
n ðlÞeimk;
to the term with a Laplacian operator such that
fr2/F gmn ¼
Z þ1

�1

1

2p

Z 2p

0

r2ð/F Þeimk dkPm
n ðlÞ dl

¼
Z þ1

�1

1

2p

Z 2p

0

r2/ðFPm
n ðlÞÞeimk dk dl

¼
Z þ1

�1

1

2p

Z 2p

0

r2/ðcm�2;nP
m
n�2 þ cm�1;nP

m
n�1 þ cm0;nP

m
n þ cm1;nP

m
nþ1 þ cm2;nP

m
nþ2Þeimk dk dl

¼
Z þ1

�1

1

2p

Z 2p

0

/eimk dkðdm
�2;nP

m
n�2 þ dm

�1;nP
m
n�1 þ dm

0;nP
m
n þ dm

1;nP
m
nþ1 þ dm

2;nP
m
nþ2Þ dl

¼ dm
�2;n/

m
n�2 þ dm

�1;n/
m
n�1 þ dm

0;n/
m
n þ dm

1;n/
m
nþ1 þ dm

2;n/
m
nþ2; ð32Þ
where
dm
�2;n ¼

�ðn� 2Þðn� 1Þ
a2

cm�2;n;

dm
�1;n ¼

�ðn� 1Þn
a2

cm�1;n;

dm
0;n ¼

�nðnþ 1Þ
a2

cm0;n;

dm
1;n ¼

�ðnþ 1Þðnþ 2Þ
a2

cm1;n;

dm
2;n ¼

�ðnþ 2Þðnþ 3Þ
a2

cm2;n

ð33Þ
and a is the radius of the earth.
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For simplicity we drop the index s + 1 and the subscript A to obtain the spectral form of the governing

equations
fggmn ¼ fN ggmn ; ð34Þ

fdgmn þ Dtfdm
�2;nf/g

m
n�2 þ dm

�1;nf/g
m
n�1 þ dm

0;nf/g
m
n þ dm

1;nf/g
m
nþ1 þ dm

2;nf/g
m
nþ2g ¼ fN dgmn ; ð35Þ
and
f/gmn þ Dt�/fdgmn ¼ fN/gmn : ð36Þ

The spectral coefficient of vorticity fggmn is obtained directly from Eq. (34). Eqs. (35) and (36) must be

solved simultaneously in spectral space. The solution of this two by two system yields a semi-implicit treat-

ment of the fast wave terms and a trivial implicit solution cost. This essential feature of the spectral semi-

implicit algorithm described in [7] is thus preserved in the current algorithm.

Let cDt ¼ ðDtÞ2�/. By substituting Eq. (36) into Eq. (35) the general equation of the system is
�cDtd
m
�2;nf/g

m
n�2 � cDtd

m
�1;nf/g

m
n�1 þ ð1� cDtd

m
0;nÞf/g

m
n � cDtd

m
1;nf/g

m
nþ1 � cDtd

m
2;nf/g

m
nþ2

¼ fN/gmn � Dt�/fN dgmn ð37Þ
for all m and n.
Eq. (37) is not coupled in m, so for a given m, we can solve a linear system with a penta-diagonal matrix

for f/gmn ; n ¼ jmj; . . . ;N , where N is defined in (22). For a given m, we have N � m + 1 equations and

N � m + 3 unknowns. The spectral truncation gives the closure conditions
f/gmNþ1 ¼ f/gmNþ2 ¼ 0 for all m:
From the spectral transform defined in (22), all functions are projected on the spectral space by truncating

to the term N(m) or N. So, this closure will not have any effect on the truncation errors.

To recover v from g and d use (11) and (12) to obtain
Fr2w ¼ f; Fr2v ¼ d:
Repeating the same process with a transformed Laplacian operator, the spectral forms are
dm
�2;nfwg

m
n�2 þ dm

�1;nfwg
m
n�1 þ dm

0;nfwg
m
n þ dm

1;nfwg
m
nþ1 þ dm

2;nfwg
m
nþ2g ¼ ffgmn ; ð38Þ
and
dm
�2;nfvg

m
n�2 þ dm

�1;nfvg
m
n�1 þ dm

0;nfvg
m
n þ dm

1;nfvg
m
nþ1 þ dm

2;nfvg
m
nþ2g ¼ fdgmn : ð39Þ
To compute fwgmNþ1; fwgmNþ2; and fvgmNþ1; fvgmNþ2, the same closure from the spectral truncation is used.

The velocity potential and stream function in physical space are obtained from the synthesis of the trans-

form (22)
wðk; lÞ ¼
XM
m¼�M

XNðmÞ

n¼jmj
wm

n P
m
n ðlÞeimk; ð40Þ
and
vðk; lÞ ¼
XM
m¼�M

XNðmÞ

n¼jmj
vmn P

m
n ðlÞeimk: ð41Þ
The first order derivatives are given by the synthesis formulas:
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owðk; lÞ
ok

¼
XM
m¼�M

XNðmÞ

n¼jmj
imwm

n P
m
n ðlÞeimk; ð42Þ

owðk; lÞ
ol

¼
XM
m¼�M

XNðmÞ

n¼jmj
wm

n

dPm
n ðlÞ
dl

eimk; ð43Þ

ovðk; lÞ
ok

¼
XM
m¼�M

XNðmÞ

n¼jmj
imvmn P

m
n ðlÞeimk; ð44Þ

ovðk; lÞ
ol

¼
XM
m¼�M

XNðmÞ

n¼jmj
vmn

dPm
n ðlÞ
dl

eimk: ð45Þ
To avoid any confusion, we put the primes back on the variables as
ow0

ok0
;

ow0

ol0 ;
ov0

ok0
;

ov0

ol0 :
The velocities U 0 and V 0 are obtained from from Eq. (7). Changing the coordinates we obtain
U 0 ¼ 1

a
ov0

ok0
ok0

ok
þ ov0

ol0
ol0

ok

� �
� 1� lðk0; l0Þ2

a
ow0

ok0
ok0

ol
þ ow0

ol0
ol0

ol

� �
; ð46Þ
and
V 0 ¼ 1

a
ow0

ok0
ok0

ok
þ ow0

ol0
ol0

ok

� �
þ 1� lðk0; l0Þ2

a
ov0

ok0
ok0

ol
þ ov0

ol0
ol0

ol

� �
: ð47Þ
6. Numerical experiments and results

In this section, we compare the numerical results from two of the standard test cases described in [19]

with numerical solutions presented in [9] from an Eulerian spectral model. All results are based on the

T42 mesh with different stretching factors, and with the focal point located at (3p/2,p/6), as shown in

Fig. 2 for c = 3, k0 = 3p/2 and h0 = 7p/36. A time step of Dt = 1200 s was used for the simulations. In order
to compare solutions from the stretched and unstretched grids, interpolation is performed to a uniform

grid.

6.1. Advection test

With a = p � 0.05, the cosine bell is advected over the poles at a slight offset. The initial height field

should be maintained throughout the course of one twelve-day rotation, but because of the numerical

approximation, the peak erodes. Fig. 3 shows the results after two days, eight days and one rotation
twelve days. The viewpoint is set at the center of the cosine bell so the focal point appears in the center

of the plot. The plot on the left shows the error of the height field on the stretched (c = 2) and rotated

(3p/2,p/6) grids while the right on the regular grids. Clearly, the accuracy is better with the stretched

(c = 2) grid at day two (Fig. 3(a)). The solution also appears smoother with fewer oscillations in front

of and behind the bell.
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Fig. 2. T42 mesh after stretching (c = 3) and rotation to (3p/2,7p/36).
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This is what one expects, and hopes for, with the added resolution of the focused grid. The semi-

Lagrangian transport method applied only to the geopotential equation does not exercise the entire algo-

rithm. What is exercised is primarily the interpolation on the stretched grid in the reconstruction of the old
time level height field at departure points. The smaller grid spacing increases the spatial accuracy of the

interpolation yielding more accurate results. When the bell advects out of the focused region, the mesh

spacing increases as does the interpolation error. Fig. 3(b) shows the solution at day eight when the cosine

bell is located on the coarsest part of the mesh, on the opposite side of the sphere from the focal point. The

plot is viewed from directly above this location and the error is now larger than the unstretched solution at

the same time. Oscillations before and after have developed in the same pattern as the unstretched regular

grid solution.

The final height field error after one rotation (12 days or 864 time steps of 1200 s) is shown in Fig.
3(c). Even though the bell has entered an area of higher resolution, with the focal point located just

above the center of the plot, the error from the coarse grid area persists. In fact, the cumulative effect

of the stretched solution is a doubling of the maximum error. Comparing with the initial height field,

the profile has spread out in the same pattern the regular grid solution exhibits. Fig. 4 shows the com-

parison of the L2 and Lmax error norms as a function of time on the stretched and rotated grid and on

the regular grids at T42. The increased accuracy around day two when the bell is traversing the high

resolution area is seen as well as the degradation in accuracy when the bell is in the low resolution area

of the sphere.

6.2. Zonal flow over an isolated mountain

Test Case 5 has no analytic solution, but it has been used to study different grid schemes because of the

regional features of the solution. These features result from the zonal flow impinging on a single large

mountain centered at ð3p
2
; p
6
Þ. This is the same location used for the focal point of the stretched grid. The

surface mountain height is given by



Fig. 3. Contour plots for Case 1 of the error in the height field at (a) day 2, (b) day 8, and (c) day 12 (one rotation). Left: on the

stretched and rotated grids with the stretching factor 2 and focal point (3p/2,p/6). Right: on the regular grids.
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hs ¼ hs0ð1� r=RÞ;

where hs0 ¼ 2000 m, R = p/9 and r2 = min[R2, (k � kc)

2 + (h � hc)
2]. The equivalent depth h0 has been

changed to 5960 m for this case.

The initial zonal flow defined from test Case 2 of [20] develops a lee wave with shedding vortices. The

areas of sharpest gradient are above and in front of the mountain as seen in the contour plots of the height

field shown in Fig. 5. The initial condition shows no effect of the surface orography while by day 5 (Fig.

5(a)), the wave structure has started to emerge. Each plot (at day 5, 10, and 15) of the series in Fig. 5 com-
pares well with the reference solutions from an Eulerian spectral model given in [9]. The solutions are

smooth and show improvement in the area of steepest gradients. The Eulerian spectral solutions show a

‘‘spectral ringing’’ just before the mountain which has been eliminated in the semi-Lagrangian formulation.

The mechanism for the elimination of the spectral ringing is the inherent smoothing from the SLT

interpolation.

In order to see the effect of stretching on the solution three simulations are compared in Figs. 6 and

7. The first figure is the difference of the solutions (T42) on regular grids and on stretched (c = 2)

and rotated (3p/2,p/6) grids at 5 days. Clearly, the height fields are not the same. The area of largest
change is in the focal area between �60� and �30�. The focusing is refining the solution by resolving

gradients in front of the mountain. The trend continues as the stretching factor is increased to c = 3 in

Fig. 7.

Another effect of the focusing is a shift in the path of the downstream vortices as the mountain lee

wave is better resolved. The difference plots in height show an increased smoothing away from the

mountain in the coarse grid areas. Fig. 7 shows that the downstream height maximums are decreased

with increased stretching because of this smoothing, though the effect is very small on the global

solution.
Fig. 8 documents the changes in global mass and energy for Case 5 over the 15 day simulation period.

The comparison shows the improvement of the results using the stretched grids. The stretched grids do a

significantly better job in conserving total energy and mass. This may have implications for long time sim-

ulations where the stability of the calculation depends on accurately accounting for conserved quantities.
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How the conservation is improved with the focused grid may be related to the conversion

of potential and kinetic energies within the model. These conversions are most active in the area of high

gradients of the geopotential, which are being better resolved and represented with the focused grid.
Fig. 9 shows the differences for the Case 5 on the regular grid of T85 and the stretched and rotated grid

with the mapping factor c = 2.5 of T42. From the difference of the height fields, we got similar results

around the mountain, where we have the focused grid of T42. In another words, we have doubled the

resolution at the local area we are interested. However, in Fig. 10, we show the differences between the

different time steps (Dt = 1200 s and Dt = 3600 s) on the regular grid of T85. The result shows the little

impact of the big time step.
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Fig. 9. Comparison for Case 5 between T85 on regular grid and T42 with c = 2.5. The time steps are Dt = 1200.
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Fig. 10. Comparison for Case 5 (T85) on regular grids with Dt = 1200 and Dt = 3600.
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7. Conclusions

The utility of focused grids to resolve special flow features has been investigated in the context of the

shallow water equations in a spherical geometry. A vorticity–divergence formulation with an advective

form suitable for the semi-Lagrangian transport scheme has been presented and shown to work effectively

with a spectral discretization of the operators. The focused grids are based on Schmidt�s conformal trans-

formation and a suitable change of variables of the differential operators allows for a semi-implicit solution

of the equations in spectral space.
The solutions of two shallow water test cases demonstrate the advantages of local resolution for certain

types of weather and atmospheric flow phenomena. The accuracy and stability of the solutions compares

favorably with a uniform Gaussian grid spectral formulation.

We have begun to extend the method with a generalization of the Schmidt mapping that will allow multi-

ple regions to be resolved. A two-time level semi-Lagrangian formulation will also be examined to improve

computational efficiency.
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